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ABSTRACT

Position determination for a mobile robot is an important part of autonomous navigation. In many cases, dead reckoning is 
insufficient because it leads to large inaccuracies over time. Beacon- and landmark-based estimators require the emplace-
ment of beacons and the presence of natural or man-made structure respectively in the environment. In this paper we 
present a new algorithm for efficiently computing accurate position estimates based on a radially-scanning laser 
rangefinder that does not require structure in the environment. The algorithm employs a connected set of short line seg-
ments to approximate the shape of any environment and can easily be constructed by the rangefinder itself. We describe 
techniques for efficiently managing the environment map, matching the sensor data to the map, and computing the robot’s 
position. We present accuracy and runtime results for our implementation.
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1.0 Introduction

Determining the location of a robot relative to an absolute 
coordinate frame is one of the most important issues in the 
autonomous navigation problem. In a two dimensional 
space, the location of a mobile robot can be represented by 
a triplet (tx, ty, θ) known as the robot pose. A mobile coor-
dinate system (Robot Frame) attached to the robot can be 
considered such that (tx, ty) represents the translation (posi-
tion) of the Robot Frame with respect to an absolute coordi-
nate system (World Frame) and θ represents its orientation 
(heading) (Figure. 1).

FIGURE  1. World Frame and Robot Frame

The simplest approach in estimating the robot pose (posi-
tion and orientation) is provided by the dead reckoning sys-
tem, in which both position and orientation are given by 
counting the revolutions of the wheels. The advantage of 
dead reckoning is that it is simple and inexpensive. How-
ever, assuming even very small errors, as the robot moves 
from one place to another, the uncertainty about its pose 
grows. 

In order to reduce this uncertainty registration with the 
environment is required. Different approaches have been 
proposed. A significant number use landmark recognition, 
either extracting relevant natural features (corners, objects, 
etc.) using a camera [8, 12] or identifying prelocated bea-
cons using both a camera [9] and an optical scanner [19]. 
The major disadvantages of the first are the poor accuracy 
as well as the need for a suitable environment. Major draw-
backs of beacon-based navigation are that the beacons must 
be placed within range and must be appropriately config-
ured in the robot work space. 

An alternate approach consists of the comparison of dense 
range data to model data. Since both accuracy and robust-
ness in a position estimator depend on the amount of data 
used in the comparison, this approach presents some impor-
tant advantages over the two above mentioned. 
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The matching problem between two sets of data can be for-
mulated in two different ways: feature-based and iconic. In 
the feature-based method, a set of features are extracted 
from the sensed data (such as line segments, corners, etc.) 
and then matched against the corresponding features in the 
model. Shaffer et al. [1] using a laser scanner rangefinder 
and Crowley [5] and Drumheller [14] using range from a 
rotating sonar, proposed a feature-based approach for a 2D 
environment. Krotkov [11] used a single CCD camera to 
extract angles to vertical edges within the scene and then 
determine the robot pose by establishing their correspon-
dence in a 2D map. 

In contrast, the iconic method works directly on the raw 
sensed data, minimizing the discrepancy between it and the 
model. Hebert et al [13] formulated an iconic method to 
compare two elevation maps acquired from a 3D laser 
rangefinder. Moravec and Elfes [4, 17] proposed a tech-
nique to match two maps represented by occupancy grids. 
The occupancy grid models the environment using a spatial 
grid of cells, where each cell has a probability value 
assigned to it representing the likelihood that the cell is 
occupied. Finally, Cox [2] used an infrared laser 
rangefinder to get a 2D radial representation of the environ-
ment which is matched against a line segment map.

In this paper, we present a new iconic approach for estimat-
ing the pose of a mobile robot equipped with a radial laser 
rangefinder. Unlike prior approaches, our method can be 
used in any type of environment, both structured and 
unstructured. Our map consists of a possibly large number 
of short line segments, perhaps constructed by the 
rangefinder itself, to approximately represent any environ-
ment shape [7]. This representation introduces problems in 
map indexing and error minimization which are addressed 
to insure that accurate estimates can be computed quickly.

2.0 Problem statement

The position estimation problem consists of two parts: sen-
sor to map data correspondence and error minimization. 
Correspondence is the task of determining which map data 
point gave rise to each sensor data point. Once the corre-
spondence is computed, error minimization is the task of 
computing a robot pose that minimizes the error (e.g., dis-
tance) between the actual location of each map data point 
and the sensor’s estimate of its location. In this section we 
formalize these two parts.

Let A be a set of sensed data points taken from a certain 
robot position, and B be a set of either sensed data 
extracted from a different position or a set of data describ-
ing a world map. The matching problem for position esti-
mation can be stated as how to determine the best mapping 

of A onto B. In others words, how to compute the transfor-
mation T which minimizes an appropriate error function:

(EQ 1)

Consider a world map M described by a set of data M = 
{M 1, M2, ... ,Mm} expressed in an absolute coordinate sys-
tem (World Frame) and sensed data S = {S1, S2, ... ,Sn}, 
where Si is expressed in a local coordinate system attached 
to the mobile robot (Robot Frame). Then, the robot position 
estimation consists of solving the minimization problem:

(EQ 2)

In this paper we are concerned with scanned data taken 
from a two-dimensional world maps. A convenient way to 
describe these maps is by means of a set M = L= {L1, L2, ... 
,Lm} where Lj represents the line segment between the 
“left” point (aj

l, bj
l) and the “right” point (aj

r, bj
r) in the 

World Frame (see Figure 2). This line segment lies on the 
line given in an implicit normalized form by:

(EQ 3)

FIGURE  2. Different distances to consider for each line 
segment.

In the iconic approach presented in this paper, the sensed 
data will consist of points taken from a radial laser scanner. 
These points will be referred to as either sensed points or 
scanned points.

Now, let  be the binary relation between the finite sets S 
and L

(EQ 4)

This relation can be represented by means of the nxm cor-
respondence matrix R which elements are:

rij  = 1 if the point Si is a measurement of segment Lj

rij  = 0 otherwise
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Determining this matrix R is equivalent to solving the cor-
respondence problem formulated as determining which line 
segment Lj from the model L gave rise to the image point 
Si  pi= (xi,yi)

T. Obviously, because one point can corre-
spond to only one line segment, each of the rows of R will 
contain just one value “1”.

A reasonable criterion for constructing the matrix R is the 
minimum euclidean distance (this will be emphasized in 
the next section). Thus, let D be the nxm distance matrix 
whose elements dij  are the distances between the sensed 
point Pi = (Xi,Yi)

T and the line segment Lj defined as fol-
lows:

dij  = d0 if (a0
j,b

0
j) is an element of Lj

dij  = min(dr, dl) otherwise

where (see Figure 2):

(EQ 5)

 where 

(EQ 6)

(EQ 7)

and 

(EQ 8)

Equation 8 defines the transformation between a point Pi in 
the World Frame and a point pi in the Robot Frame given 
by (tx,ty,θ) (see Figure1).

From the matrices D and R it is possible to obtain the error 
vector between the sensed points and the corresponding 
line segments:

(EQ 9)

It should be noted that e is a function of the transformation 
defined in Equation 8. Then, the parameter to minimize can 
be expressed as:

(EQ 10)

The iconic position estimation problem consists of the 
computation of (tx,ty,θ) to solve:

(EQ 11)

In practice, the matrix R is derived from D by:

rik = 1 if dik < dij  for all j

rik = 0 otherwise

Moreover, R is a “dynamic matrix” in the sense that it is 
updated after each iteration of the optimization algorithm to 
solve Equation 11.A similar approach was used in [2]. 

Although the approach presented here to compute R is 
deterministic, this formulation enables one to treat the cor-
respondence problem in a probabilistic way. In this formu-
lation, the elements rij  of the matrix R would no longer be 
either 1 or 0 but would express the probability that the 
point Pi corresponds to the segment line Lj.

One of the main issues when solving the matching problem 
is the high cost involved in the computation of the nxm 
matrix D. In section 3 we present a more efficient approach 
to determine DxRT avoiding the entire computation of the 
matrix D.

3.0 Iconic Position Estimation

In this section, the two subproblems (correspondence and 
minimization) of the iconic position estimation problem are 
described. Because the world map is represented in an 
absolute coordinate system (World Frame) and the sensed 
data is represented in a mobile coordinate system attached 
to the robot (Robot Frame) a common representation for 
both must be considered. This can be accomplished by 
using Equation 8 with a first estimate of the robot pose (tx, 
ty, θ) provided by the dead reckoning system (Figure 4). 

Once the line segments from the map and scanned points 
are represented in the same coordinate system it is possible 
to search for the segment/point correspondence pairs. 

FIGURE  3. Two levels of resolution in the map
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To establish such a correspondences all of the segments 
from the map could be checked against every range point in 
order to compute the matrix D (O(nxm)). In a sensor such 
as Cyclone Range Finder, which will be described later, 
one thousand scanned points would have to be matched 
against a model of hundreds of line segments (which could 
be built by the robot itself). To avoid this extremely expen-
sive procedure, we propose a two-tier map representation 
(Figure 3):

1.- Cell map: array of grid cells in which every cell is 
labeled either occupied, if it contains at least one line seg-
ment, or empty, if it contains no segments (see Figure 3). 
Elfes and Moravec used a similar approach for sonar navi-
gation in their occupancy grid [4, 17].

2.-Line map: collection of segments inside each of the 
occupied cells considered for correspondence. 

Thus, the correspondence of sensed points to the model 
segments is accomplished in two steps. First, a set of cells 
is selected for each of the scanned points. Second, only 
those segments inside these cells are checked for corre-
spondence (Figure 4). By using this representation, the 
number of segments to be checked decreases considerably, 
drastically reducing the matching time. 

The grid size must be selected according to the characteris-
tics of the particular application. One cell for the whole 
map is inefficient because it requires all of the line segment 
to be examined for each sensed point (no improvement at 
all). A very large number of cells is also inefficient because 
it requires a large number of empty cells to be checked. We 
have determined that the appropriate size of the grid is a 
function of a variety of parameters (number of line seg-
ments in the model, type of environment, initial error, etc.) 
and therefore an empirical method is proposed for choosing 
it.

FIGURE  4. Matcher structure

3.1 Hierarchical iconic matching 

In this section, we formulate iconic matching for the two-
tier map. Considering that candidate cells must be selected 
within which to search for the corresponding line segment, 
let U be a binary nxc matrix defined as follows:

 uik = 1 if cell k is selected for the scanned point i 

 uik = 0 otherwise

Let V be a binary cxm matrix defined as follows:

 vkj = 1 if the lj segment lies in cell k ( )

 vkj = 0 otherwise

 Consider the nxm matrix W’  given by the product UxV. 
The elements w’ij  are given by:

  

Consider the matrix W defined as follows:

wij  = 1 if w’ij  > 0

wij  = 0 if w’ij  = 0
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Thus, a generic element wij  from the matrix W indicates 
whether the segment lj lies in any of the cells selected for 
the point Pi or not, and therefore if the distance between lj 
and Pi must be computed or not.

For a given point Pi, assuming both U and V have been 
obtained, the number of distances to be computed reduces 
from m to m’i, where:

(EQ 12)

Although the matrix U must be calculated for each com-
puted estimate, the matrix V is computed just once, when 
the map is built.

Notice that in the extreme case given above in which the 
number of cells considered for the cell map (c) is very high 
(c >> m), the computation of matrix U (nxc) could become 
more expensive that the straightforward approach of com-
puting matrix D (O(nxm)). In the following section the 
methodology to obtain the matrix U is presented.

3.2 Cell selection

After the scanned points have been transformed to the 
World Frame, a set of occupied cells must be selected for 
each of them (Figure 4). Due to errors in both dead reckon-
ing and sensor, in a significant number of cases, the points 
Pi are located in empty cells. We analyze these errors in 
more detail below.

3.2.1 Dead Reckoning errors

Dead reckoning is intrinsically vulnerable to bad calibra-
tion, imperfect wheel contact, upsetting events, etc. Thus, a 
bounded confidence region in which the actual location is 
likely to be found is used. This region is assumed to be a 
circle of radius δr proportional to the traversed distance. 
This uncertainty in the robot position propagates in such a 
way that an identical uncertainty region centered at the 
sensed point can be considered (Figure 5a).

In a similar way, the heading error is assumed to be 
bounded by ±εr degrees. This error is also considered to be 
proportional to the traversed distance. Notice that the effect 
of this error over the uncertainty region depends on the 
range, the bigger the range the larger the uncertainty region 
(Figure 5b).

 

FIGURE  5. Uncertainties in the sensed data due to Dead 
Reckoning error pose. (A) Uncertainty region 
caused by the position error. (B) Dead 
Reckoning position an orientation error 
simultaneously.

3.2.2 Sensor errors

Sensor errors arise for the following reasons:

-The range provided by the laser rangefinder is noisy as 
well as truncated by the resolution of the sensor.

- The angular position given by the decoder has some 
inaccuracy.

Thus, the two errors to be considered are range error and 
orientation error. Although they can be modeled as a gaus-
sian distribution, here both of them are modeled as 
bounded errors, as were dead reckoning errors. Their maxi-
mum and minimum values define a new region of uncer-
tainty to be added to the one arising from the dead 
reckoning errors. Figure 6a shows a region defined by two 
errors parameters δs and εswhose values are obtained from 
the sensor calibration experiments [7]. This region does not 
increase with the distance traversed by the robot. On the 
other hand, although it depends on the range value, it is not 
as significant as the dead reckoning error (εs << εr.). 

 Figure 6b shows the final region after considering both 
dead reckoning and sensor errors. Notice that the sensed 
point location is not necessarily along the scanning ray but 
inside an uncertainty region.
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FIGURE  6. (a) Uncertainty in the sensed data due to the 
sensor errors. (b) Uncertainty region caused 
by Dead Reckoning and Sensor errors.

3.2.3 Cells Selection algorithm

The algorithm to select the cells takes into account the 
above mentioned uncertainty regions. Each time the cell 
which includes the scanned point is labeled empty a search 
for a nearby occupied cell is performed (Figure 7). The 
searching area is selected to be coincident with the uncer-
tainty region given by the sensor and dead reckoning errors 
(Figure 6b). 

If no a priori information is available, the matcher assumes 
the closest occupied cells are the best ones in terms of con-
fidence. A distance function based on 8-connectivity has 
been used. The search radiates out from the cell containing 
the sensed point until the cell containing the nearest line 
segment is found. For all the cells located at the same dis-
tance, only those both occupied and inside the uncertainty 
region are examined for the closest line segment within 
them (Figure 7). 

FIGURE  7. Cells to be considered when the original cell is 
empty.

There is no guarantee that every time the scanned point lies 
in an occupied cell, the closest line segment be inside it. 
Figure 8b shows a simple example of this case. The 
scanned point should be assigned to the segment labeled 
“l j” rather than segment “li”. The matcher rectifies this 
problem by including the neighbor occupied cells as candi-
dates to search for the nearest line segment.

The location of previous scanned points with respect to 
their respective target line segments could be used to 
decide which cells are more likely to contain the target line 
segment. This approach has not been implemented so far, 
but it could have a considerable impact over the efficiency 
of the algorithm.

To make the algorithm robust against outliers, incomplete-
ness of the model, presence of extraneous objects, etc., a 
progression of increasingly better position estimates is 
computed (see Section 3.4). The uncertainty region is 
reduced along the progression. This approach is based on 
the fact that the uncertainty due to the error in sensor loca-
tion decreases as the position estimate improves. However, 
the uncertainty region due to the sensor errors does not 
vary. In practice, this is accomplished by weighting the 
parameters  δr and εr. between 0 and 1.

FIGURE  8. (a) Line segments considered for a particular 
cell when the original cell is occupied. (b) 
Wrong assignment of the segment to the 
scanned point.

3.3 Segment correspondence

To determine which line segment inside the assigned cells 
to match to the scanned point, a minimum distance crite-
rion is used (Figure 8a). This assumption is valid as long as 
the displacement between sensed data and model is small 
enough. This assumption limits the robot traversed distance 
between consecutive position estimates. However, since 
after each iteration the point/line-segment pairs are 
updated, the limitation can be relaxed somewhat (Figure 9).
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Given a scanned point Pi= (Xi, Yi), three different dis-
tances for each line segment are computed (Figure 2). They 
are given by equations 5, 6 and 7. The smallest distance to 
the line segments inside the selected cells determines which 
line segment lj is be matched to Pi.

FIGURE  9. Block diagram of the iconic position estimator

3.4 Minimization

After the matched pairs have been computed, the estimate 
is computed by minimizing the following:

(EQ 13)

where ei=ei(tx, ty, θ) is given in section 2 by Equation 9. 

Although the rotation θ makes this optimization problem 
non-linear, a closed-form solution exists. The Schonemann 
approach treats the rotation elements as unknowns and 
applies Lagrange multipliers to force the rotation matrix to 
be orthogonal [16]. However, we have opted for a iterative 
algorithm (Gauss-Newton) to support the future modelling 
of gaussian uncertainty in the sensor and robot data. Such 
modelling requires nonscalar weights on the error. No 
closed-form solution exists for the minimization. In this 
method the equation to be solved is:

 (EQ 14)

where e is the error vector given by Equation 9, d is the dif-
ference vector between the transformation parameters on 
successive iterations, and J is the Jacobian:

(EQ 15)

Notice that Equation 14 is overdetermined for n>3. Then 
we use the pseudoinverse of the Jacobian to find a least 
square fit of d:

(EQ 16)

Equation 16 is solved iteratively for the displacement vec-
tor d until the absolute value of its elements is less than 
some tolerance. On each iteration, the correspondence 
between sensor and model data is recomputed to reduce the 
effects of outliers and mismatches. We have empirically 
determined that iterating more than once between corre-
spondence updates yields no additional accuracy to the 
final estimate, thus our approach is functionally equivalent 
to the closed-form solution with updating. 

This method has a quadratic convergence and is less sensi-
tive than the conventional Newton method to the starting 
point and the conditioning of the Jacobian. However, for 
this algorithm to converge to a correct solution, it must be 
guaranteed that the initial orientation error is less than 
90deg, well within the accuracy of dead reckoning.

4.0 Application

In this section, we describe the mobile robot and the sensor 
used in this application as well as the implementation and 
results. 

FIGURE  10. The Locomotion Emulator
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4.1 The Locomotion Emulator

The Locomotion Emulator (LE) is a mobile robot that was 
developed at the CMU Field Robotics Center (FRC) as a 
testbed for development of mobile robotic systems (Figure 
10). It is a powerful all-wheel steer, all-wheel drive base 
with a rotating payload platform. A more complete descrip-
tion can be found in [3].

4.2 Cyclone

The Cyclone laser range scanner (Figure 11) was also 
developed at the CMU Field Robotics Center to acquire 
fast, precise scans of range data over long distances (up to 
50m). The sensor consists of a pulsed Gallium Arsenide 
infrared laser transmitter/receiver pair, aimed vertically 
upward. A mirror in the upper part of the scanner rotates 
about the vertical axis and deflects the laser beam so that it 
emerges parallel to the ground, creating a two dimensional 
map of 360 degrees field of view. The resolution of the 
range measurements is set to be 10cm and the accuracy is 
±20cm. The angular resolution depends upon the resolution 
of the encoder that is used on the tower motor which is cur-
rently programmed to acquire 1000 range readings per rev-
olution [6].

It has been our experience that the effects of the truncation 
due to the resolution of the scanner and the non-linear 
behavior of the range measurement along different operat-
ing target distances must be considered to obtain accurate 
results in any position estimation algorithm [15]. Rather 
than using the standard 10cm range resolution and ±20cm 
accuracy numbers mentioned above, we considered the 
Cyclone scanner’s range offset1, truncation and angular 
accuracy characterization obtained in a separate study [7].

FIGURE  11. The Cyclone laser rangefinder

1.-  The range offset is a function which describes the difference 
between the measured range value and the true distance to the tar-
get.

4.3 Experimental results

The iconic position estimation algorithm presented in this 
paper was tested at the highbay area of the FRC. Figure 12 
shows the line segment model that was used as world map 
in this application. The corridor is about 6m wide and 20m 
long. The solid line segments denote walls which were con-
structed from wood partitions. We picked this configura-
tion because its simplicity and reliability in being surveyed. 
The dotted line represents the path that the LE is instructed 
to follow. It consists of a symmetrical trajectory 19m long. 
The LE, initially positioned at the beginning of the path, 
was moved by steps of 1m. At each of these positions, the 
position estimator was executed and the robot pose was 
surveyed using a theodolite. Figure 13 shows the sensed 
data taken by the Cyclone at the 7th step. Notice that a con-
siderable number of points from the scanner corresponds to 
objects that are not included in the model of figure 12.

The estimator was programed to use two different represen-
tations of the model. In the first one, the model was repre-
sented by 8 long line segments shown in figure 12. In the 
second, each of these line segments was split into a number 
of small segments 10cm long, providing a model with 
almost 400 line segments. The parameter values used were: 
δr = 5cm and εr = 5deg for the LE (5% of the step size) and 
δs = 10cm and εs = 0.7deg for the Cyclone. The grid size 
was 0.6x0.6m2. 

As expected the computed error (surveyed minus estimate) 
for the two representations was exactly the same at the 20 
positions along the path (Figure 14). The maximum posi-
tion error was 3.6cm, and the average position error was 
1.99cm. The maximum heading error was 1.8deg. and the 
average was 0.73deg. These results are significant given 
the resolution (10cm.) and accuracy (20cm.) of the scanner.

Another important result is the run times. The estimator 
was run on a Sun Sparc Station 1 with a math coprocessor. 
For the 8 line segment representation the approximate run 
times were 0.37sec. for the preprocessing (computation of 
the cell map), 0.27sec. for the minimization and 1.76 for 
the segment correspondence, giving a total cycle time of 
2sec. For the 400 line segment representation, run times 
were 12.9sec. for the preprocessing, 0.29sec for the mini-
mization and 3.22 for the segment correspondence, giving 
3.5sec. of total cycle time. Note that by multiplying the 
number of line segments by a factor of 50, the preprocess-
ing time increases considerably, however the matching 
time is increased only by a factor of 1.75.

In the event that the uncertainty regions for the sensed 
points can be approximated by circles centered on the 
points, the segment correspondence can be computed rap-
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idly using a numerical Voronoi diagram. This approxima-
tion worked well for our highbay experiments [18].

FIGURE  12. World model representation and map 
representation

FIGURE  13. Range scan provided by the Cyclone. The 
circular icon represents the LE at the position 
where the scan was taken from. 

FIGURE  14. Computed errors for the 20 positions along 
the path.

5.0 Conclusions

In this paper a two dimensional iconic based approach for 
position estimation was presented. By considering two res-
olution levels in the map, a two-stage method is proposed 
to solve the point/line-segment correspondence. Further-
more, the uncertainty due to errors in both dead reckoning 
pose and sensed data are considered in order to bound the 
searching area. This approach drastically reduces the com-
putation time when the map is given by a high number of 
line segments (e.g. map built by the robot itself). This algo-
rithm was implemented and tested using a 2D radial laser 
scanner mounted on a omnidirectional robot, showing for 
the first time an explicit quantification of the accuracy of an 
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iconic position estimator. The estimator has shown to be 
robust to incompleteness of the model and spurious data, 
and provides a highly accurate estimate of the robot posi-
tion and orientation for many-line environments. 

Future work includes a more complete navigation system 
including map building capability and a Gaussian uncer-
tainty model for both the sensor and the robot motion. 
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