Y e o IS

13:161-179. Kluwer Academic Press. 1995.

A Mobile Robot Iconic Position
Estimator using a Radial Laser Scanner*

Javier Gonzalez!, Anthony Stentz? and Anibal Ollero®

1.- Dpto. Ingenieria de Sistemas y Automética. drsidad de Malaga. Plaza El Ejido s/n. 29013 Mal&§AIN
2.- Field Robotics Center, The Robotics Instit@arnegie Mellon University, Pittsburgh, PA, 15213AJ
3.- Dpto. Ingenieria de Sistemas y Automatica. @rsidad de Sevilla. Avda. Reina Mercedes s/n. 48B¥\2lla, SPAIN

ABSTRACT

Position determination for a mobile robot is an mmant part of autonomous navigation. In many casesd reckoning is
insufficient because it leads to large inaccura@gsr time. Beacon- and landmark-based estimatgsire the emplace-
ment of beacons and the presence of natural or made structure respectively in the environmenthis paper we
present a new algorithm for efficiently computirggarate position estimates based on a radially-si@m laser
rangefinder that does not require structure in émvironment. The algorithm employs a connectedfs&tort line seg-
ments to approximate the shape of any environnrahtan easily be constructed by the rangefindetfit¥Ve describe
techniques for efficiently managing the environmmeap, matching the sensor data to the map, and atngpthe robot’s
position. We present accuracy and runtime resolt®fr implementation.
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1.0 Introduction The simplest approach in estimating the robot gpesi-
tion and orientation) is provided by the dead redkg sys-
tem, in which both position and orientation areegi\oy
counting the revolutions of the wheels. The advgetaf
dead reckoning is that it is simple and inexpendi@w-
ever, assuming even very small errors, as the nolooes
from one place to another, the uncertainty abasupdtse
grows.

Determining the location of a robot relative toarsolute
coordinate frame is one of the most important issnehe
autonomous navigation problem. In a two dimensional
space, the location of a mobile robot can be reprtes by

a triplet (g, t,, 8) known as the robot pose. A mobile coor-
dinate system (Robot Frame) attached to the radoobe
considered such that (t,) represents the translation (posi-
tion) of the Robot Frame with respect to an absobatordi-
nate system (World Frame) afdepresents its orientation
(heading) (Figure. 1).

In order to reduce this uncertainty registratiomtvthe
environment is required. Different approaches Hasen
proposed. A significant number use landmark recogmi
either extracting relevant natural features (casnebjects,
etc.) using a camera [8, 12] or identifying pretecbbea-
cons using both a camera [9] and an optical scqi®ér
A The major disadvantages of the first are the poouacy
Y y 4 as well as the need for a suitable environmentolMajaw-
backs of beacon-based navigation are that the heamaost
/{9 be placed within range and must be appropriatetfigo
> ured in the robot work space.

An alternate approach consists of the comparisatense
. range data to model data. Since both accuracyangst-
ty X ness in a position estimator depend on the amduwdta
used in the comparison, this approach presents sopuw-
FIGURE 1. World Frame and Robot Frame tant advantages over the two above mentioned.
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Froplem statement

The matching problem between two sets of data edois
mulated in two different ways: feature-based awmdhiic. In
the feature-based method, a set of features aractsd
from the sensed data (such as line segments, speter)
and then matched against the corresponding featutbe
model. Shaffeet al.[1] using a laser scanner rangefinder
and Crowley [5] and Drumheller [14] using rangenfra
rotating sonar, proposed a feature-based appraachZD
environment. Krotkov [11] used a single CCD cantera
extract angles to vertical edges within the scertethen
determine the robot pose by establishing theiraspon-
dence in a 2D map.

In contrast, the iconic method works directly oa tAw
sensed data, minimizing the discrepancy betweamdtthe
model. Heberet al[13] formulated an iconic method to
compare two elevation maps acquired from a 3D laser
rangefinder. Moravec and Elfes [4, 17] proposeéch
nigque to match two maps representecbbgupancygrids.
The occupancy grid models the environment usingptia
grid of cells, where each cell has a probabilitiuea
assigned to it representing the likelihood thatdbkis
occupied. Finally, Cox [2] used an infrared laser
rangefinder to get a 2D radial representation efehviron-
ment which is matched against a line segment map.

In this paper, we present a new iconic approaclestmat-
ing the pose of a mobile robot equipped with aakldiser
rangefinder. Unlike prior approaches, our methaod loa
used in any type of environment, both structured an
unstructured. Our map consists of a possibly laugaber
of short line segments, perhaps constructed by the
rangefinder itself, to approximately represent anyiron-
ment shape [7]. This representation introduceslprob in
map indexing and error minimization which are addesl
to insure that accurate estimates can be compuietly

2.0 Problem statement

The position estimation problem consists of twagaen-
sor to map data correspondence and error mininoizati
Correspondence is the task of determining which dep
point gave rise to each sensor data point. Oncedtre-
spondence is computed, error minimization is tis& tf
computing a robot pose that minimizes the erray.(elis-
tance) between the actual location of each mapiata
and the sensor’s estimate of its location. In eistion we
formalize these two patrts.

Let A be a set of sensed data points taken froertaio
robot position, and B be a set of either senseal dat
extracted from a different position or a set ofaddéscrib-
ing a world map. The matching problem for positesti-
mation can be stated as how to determine the begspimg

of A onto B. In others words, how to compute thasfor-
mation T which minimizes an appropriate error fimct
E = ®(T(A),B) (EQ1)
Consider a world map M described by a set of data M
{M 4, My, ..
tem (World Frame) and sensed data S 5 §%, ... \§},

where $is expressed in a local coordinate system attached

to the mobile robot (Robot Frame). Then, the rqimsition
estimation consists of solving the minimization leon:

miny E = ®(T(S), M) (EQ 2)
In this paper we are concerned with scanned dkémta
from a two-dimensional world maps. A convenient way
describe these maps is by means of a set M = L#L{}, ...
.Lm} where L represents the line segment between the
“left” point (g', ') and the “right” point (#, b") in the
World Frame (see Figure 2). This line segmentdieshe
line given in an implicit normalized form by:

_ EQ3
AX+BY+CG =0 (EQ3)

(Xi,Yi)

FIGURE 2. Different distances to consider for each line
segment.

In the iconic approach presented in this papersémsed
data will consist of points taken from a radialascanner.
These points will be referred to as either sensaatp or
scanned points.

Now, let 0 be the binary relation between the figigés S
and L

0OSx L (EQ4)

This relation can be represented by means of the ¢ot-
respondence matrix R which elements are:

rj = 1 if the point $is a measurement of segmenpt L

rj = 0 otherwise
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IConIC FosItion estimation

Determining this matrix R is equivalent to solvithg cor-
respondence problem formulated as determining wiivieh
segment }_from the model L gave rise to the image point
S =Epi= (x,,y,) Obviously, because one point can corre-
spond to only one line segment, each of the rowR will
contain just one value “1".

A reasonable criterion for constructing the maRixs the
minimum euclidean distance (this will be emphasired
the next section). Thus, let D be the nxm distana&ix
whose elements;jcare the distances between the sensed
pointP; = (X;,Y;)" and the line segment tefined as fol-
lows:

dij = & if (a%,b%) is an element of L

dj = min(d, d) otherwise

where (see Figure 2):

= |[AX +B)Y, + C-‘ (EQ5)
where (A +B; Atz =
dij = (% —a)°+ (Y, -b)*"*"? (EQ6)
dj = (=) + (¥ —b)H™"*? €Q7)
and

X cosd —sind t,| |X;
Yi| = |sin® cosB t|y, (EQ8)

1 0 0 1|1

Equation 8 defines the transformation between atByin
the World Frame and a poip{ in the Robot Frame given
by (t.t,,0) (see Figurel).

From the matrices D and R it is possible to obta@error
vector between the sensed points and the corresgpnd
line segments:

= diag(Dx RN €Q9)

e=(g..€)
It should be noted thatis a function of the transformation
defined in Equation 8. Then, the parameter to mizgncan
be expressed as:

= Y eltat,0) (EQ 10)
i=1

The iconic position estimation problem consistshef

computation of (tt,,6) to solve:

ming t,.6) I (EQ11)

In practice, the matrix R is derived from D by:
r = 1 if dy < d; for all |

rx = 0 otherwise

Moreover, R is a “dynamic matrix” in the sense tihé
updated after each iteration of the optimizatiqgoathm to
solve Equation 11.A similar approach was usedJn [2

Although the approach presented here to compute R |
deterministic, this formulation enables one totttea cor-
respondence problem in a probabilistic way. In forsnu-
lation, the elements; of the matrix R would no longer be
either 1 or 0 but would express the probabilityt tiha
pointP; corresponds to the segment line L

One of the main issues when solving the matchioglpm
is the high cost involved in the computation of tixen
matrix D. In section 3 we present a more efficamproach
to determine DxR avoiding the entire computation of the
matrix D.

3.0 Iconic Position Estimation

In this section, the two subproblems (correspondena
minimization) of the iconic position estimation ptem are
described. Because the world map is representad in
absolute coordinate system (World Frame) and theesk
data is represented in a mobile coordinate systtanlaed
to the robot (Robot Frame) a common representdtion
both must be considered. This can be accomplished b
using Equation 8 with a first estimate of the ropose (§,
ty, 8) provided by the dead reckoning system (Figure 4).

Once the line segments from the map and scanneatspoi
are represented in the same coordinate systempdisisible
to search for the segment/point correspondencs.pair

FIGURE 3. Two levels of resolution in the map
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IConIC FosItion estimation

To establish such a correspondences all of the setgm
from the map could be checked against every rangg
order to compute the matrix D (Gfn)). In a sensor such
as Cyclone Range Finder, which will be describégek)a
one thousand scanned points would have to be nthtche
against a model of hundreds of line segments (wWtachd
be built by the robot itself). To avoid this extreljmexpen-
sive procedure, we propose a two-tier map reprasient
(Figure 3):

1.- Cell map array of grid cells in which every cell is
labeled either occupied, if it contains at least tine seg-
ment, or empty, if it contains no segments (se@rEi@).
Elfes and Moravec used a similar approach for soasi
gation in theiroccupancy grid4, 17].

2.-Line map collection of segments inside each of the
occupied cells considered for correspondence.

Thus, the correspondence of sensed points to tlielmo
segments is accomplished in two steps. First, afsells

is selected for each of the scanned points. Seaoriyl,
those segments inside these cells are checkedria-c
spondence (Figure 4). By using this representatian,
number of segments to be checked decreases caadiger
drastically reducing the matching time.

The grid size must be selected according to theackeris-
tics of the particular application. One cell foetiwhole
map is inefficient because it requires all of time Isegment
to be examined for each sensed point (no improvéaten
all). A very large number of cells is also ineféoi because
it requires a large number of empty cells to beckbd. We
have determined that the appropriate size of thttigia
function of a variety of parameters (number of |geg-
ments in the model, type of environment, initiaberetc.)
and therefore an empirical method is proposedtoosing
it.

DEAD RECKONING
POSE(Xdr, Ydr, O)

—

l SENSED POINT (xi, yi)

Transformation
to World Frame

(Xi, Yi)
v ERROR
CONSIDERATION

Select set of cellg
{Cij} 4—‘

A 4

Select closest
segment k from
set{C ij}

l

Store error
function ¢

I

FIGURE 4. Matcher structure

3.1 Hierarchical iconic matching

In this section, we formulate iconic matching foe two-
tier map. Considering that candidate cells musiddected
within which to search for the corresponding liegent,
let U be a binary xt matrix defined as follows:

uy = 1 if cell k is selected for the scanned point i

Uy = 0 otherwise

Let V be a binaryan matrix defined as follows:
Vi = 1if the | segment lies isell k (1; n ¢, 20 )
Vij = 0 otherwise

Consider the xm matrix W given by the product UxV.
The elements vy’ are given by:

Wi = zuikvkj
k=1

Consider the matrix W defined as follows:
Wij =1if W’ij >0

Wij =0 IfW'IJ =0
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IConIC FosItion estimation

Thus, a generic elementirom the matrix W indicates
whether the segmenties in any of the cells selected for
the pointP; or not, and therefore if the distance betwgen |

andP; must be computed or not. @

For a given poinP;, assuming both U and V have been

obtained, the number of distances to be computhates
from m to mj, where:

X

m =5 w, (EQ12) (b)

] O Uncertainty in robot position
Although the matrix U must be calculated for eacme

puted estimate, the matrix V is computed just omdesn

the map is built O Uncertainty in scanned point

Notice that in the extreme case given above in vttie FIGURE 5. Uncertainties in the sensed data due to Dead
number of cells considered for thell map(c) is very high saeucskgg'gg t%gogo%%?gﬁ (é“rzoLrJ”(Cg)rtgg‘% region
(c >>m), the computation of matrix Uxg) could become Reckoning position an orientation error
more expensive that the straightforward approaatoof- simultaneously.
puting matrix D (O(rm)). In the following section the
methodology to obtain the matrix U is presented. 3.2.2 Sensor errors
32 Cell selection Sensor errors arise for the following reasons:

) -The range provided by the laser rangefinder isyas
After the scanned points have been transformehleto t well as truncated by the resolution of the sensor.
World Frame, a set of occupied cells must be sedefuir N )
each of them (Figure 4). Due to errors in both deatton- - The angular position given by the decoder hasesom
ing and sensor, in a significant number of cagespbints Inaccuracy.
P; are located in empty cells. We analyze these ®iror .
more detail below. Thus, the two errors to be consideredramge errorand

orientation error Although they can be modeled as a gaus-
3.2.1 Dead Reckoning errors sian distribution, here both of them are modeled as
bounded errors, as were dead reckoning errors. Tinexi-

Dead reckoning is intrinsically vulnerable to badilora- mum and minimum values define a new region of uncer
tion, imperfect wheel contact, upsetting events, Bhus, a  t@inty to be added to the one arising from the dead
bounded confidence region in which the actual locais reckoning errors. Figure 6a shows a region definetivo
likely to be found is used. This region is assurtzede a errors parameterd; andegwhose values are obtained from

circle of radius3, proportional to the traversed distance. ~ the sensor calibration experiments [7]. This regioes not
This uncertainty in the robot position propagatestich a increase with the distance traversed by the radbotthe

way that an identical uncertainty region centeretthe other hand, although it depends on the range vilisenot
sensed point can be considered (Figure 5a). as significant as the dead reckoning eregrK €,.).
In a similar way, the heading error is assumedeto b Figure 6b shows the final region after considetath

bounded by # degrees. This error is also considered to bedead reckoning and sensor errors. Notice thateheesl
proportional to the traversed distance. Notice thateffect ~ POint location is not necessarily along the scagmay but
of this error over the uncertainty region dependste inside an uncertainty region.

range, the bigger the range the larger the uncaytatgion

(Figure 5h).
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IConIC FosItion estimation

@ (b)

FIGURE 6. (a) Uncertainty in the sensed data due to the
sensor errors. (b) Uncertainty region caused

by Dead Reckoning and Sensor errors.

3.2.3 Cells Selection algorithm

The algorithm to select the cells takes into actdum
above mentioned uncertainty regions. Each timegtie
which includes the scanned point is labeled empstyaach
for a nearby occupied cell is performed (FigureThe
searching area is selected to be coincident wahuticer-
tainty region given by the sensor and dead reckperrors
(Figure 6b).

If no a priori information is available, the matclassumes
the closest occupied cells are the best onesnmstef con-
fidence. A distance function based on 8-connegtivis
been used. The search radiates out from the cethtong
the sensed point until the cell containing the esgline
segment is found. For all the cells located atstirae dis-
tance, only those both occupied and inside thertaingy
region are examined for the closest line segmetitinvi
them (Figure 7).

UNCERTAINTY
REGION

SCANNED

\i PQINT
Zamgy

L

[ : empty cell
] : occupied cell but not selected
[] :selected cell

FIGURE 7. Cellsto be considered when the original cell is
empty.

There is no guarantee that every time the scanoied lpes
in an occupied cell, the closest line segment bigl@nit.
Figure 8b shows a simple example of this case. The
scanned point should be assigned to the segmeziethb
“lj" rather than segment;*l The matcher rectifies this
problem by including the neighbor occupied cellsasdi-
dates to search for the nearest line segment.

The location of previous scanned points with respec
their respective target line segments could be tsed
decide which cells are more likely to contain theget line
segment. This approach has not been implementét,so
but it could have a considerable impact over tfieieficy
of the algorithm.

To make the algorithm robust against outliers, mptete-
ness of the model, presence of extraneous obgictsa
progression of increasingly better position estesas
computed (see Section 3.4). The uncertainty reigion
reduced along the progression. This approach iscbas
the fact that the uncertainty due to the erroreinser loca-
tion decreases as the position estimate improveseMer,
the uncertainty region due to the sensor errors tos
vary. In practice, this is accomplished by weigbtihe
parametersd, ande,. between 0 and 1.

SCANNED
CELL POINT
I
® |
SCANNED
POINT
. II
! @

(b)

FIGURE 8. (a) Line segments considered for a particular
cell when the original cell is occupied. (b)
Wrong assignment of the segment to the
scanned point.

3.3 Segment correspondence

To determine which line segment inside the assigrdd
to match to the scanned point, a minimum distanioe-c
rion is used (Figure 8a). This assumption is vatidong as
the displacement between sensed data and moahehls s
enough. This assumption limits the robot traveisthnce
between consecutive position estimates. Howeveeesi
after each iteration the point/line-segment paies a
updated, the limitation can be relaxed somewhaj(fei 9).
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Application

Given a scanned poif= (X, Y;), three different dis-
tances for each line segment are computed (Figufieh2y
are given by equations 5, 6 and 7. The smallestmiig to
the line segments inside the selected cells detesnwhich
line segment;lis be matched t8;.

WORLD MAP
Line Segments|

ead Reckoni
Pose

SENSED DATA
Points

Array of paired
point/segment
MATCHER

One iteratior

v
ERROR

MINIMIZATION

- YES

Estimated
pose:

()

FIGURE 9. Block diagram of the iconic position estimator

3.4 Minimization

After the matched pairs have been computed, theatst
is computed by minimizing the following:

OO

(EQ 13)

O™

O
T
min(e e) = msz €
H=a

where ¢=g(ty, t,, 6) is given in section 2 by Equation 9.

Although the rotatio® makes this optimization problem
non-linear, a closed-form solution exists. The $ehoann
approach treats the rotation elements as unknonahs a
applies Lagrange multipliers to force the rotatinatrix to
be orthogonal [16]. However, we have opted foeegaitive
algorithm (Gauss-Newton) to support the future niigute
of gaussian uncertainty in the sensor and robat. daich
modelling requires nonscalar weights on the eixar.
closed-form solution exists for the minimization.this
method the equation to be solved is:
e+J d=0 (EQ 14)
wheree is the error vector given by Equationdis the dif-
ference vector between the transformation parameter
successive iterations, and J is the Jacobian:

de, de; de;
3%, a1, 30
(EQ15)
de, de, de,
at, 3, |

Notice that Equation 14 is overdetermined for nB3en
we use the pseudoinverse of the Jacobian to fledst
square fit ofd:

= 3" e (EQ 16)
Equation 16 is solved iteratively for the displagermvec-
tor d until the absolute value of its elements is |bssit
some tolerance. On each iteration, the correspa@den
between sensor and model data is recomputed toedta
effects of outliers and mismatches. We have engliyic
determined that iterating more than once betweeme<o
spondence updates yields no additional accuratheto
final estimate, thus our approach is functionatiyigalent
to the closed-form solution with updating.

This method has a quadratic convergence and iséress-
tive than the conventional Newton method to thetisg
point and the conditioning of the Jacobian. Howefar
this algorithm to converge to a correct solutianmust be
guaranteed that the initial orientation error ssl¢han
90deg, well within the accuracy of dead reckoning.

4.0 Application

In this section, we describe the mobile robot dredsensor
used in this application as well as the impleméoraand
results.

FIGURE 10. The Locomotion Emulator
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Application

4.1

The Locomotion Emulator (LE) is a mobile robot thats
developed at the CMU Field Robotics Center (FRQG) as
testbed for development of mobile robotic systeRigure
10). It is a powerful all-wheel steer, all-wheeidrbase
with a rotating payload platform. A more completsdrip-
tion can be found in [3].

The Locomotion Emulator

4.2 Cyclone

The Cyclone laser range scanner (Figure 11) was als
developed at the CMU Field Robotics Center to aequi
fast, precise scans of range data over long distaup to
50m). The sensor consists of a pulsed Gallium Adsen
infrared laser transmitter/receiver pair, aimedticatly
upward. A mirror in the upper part of the scanrstates
about the vertical axis and deflects the laser beaihat it
emerges parallel to the ground, creating a two dsional
map of 360 degrees field of view. The resolutionhaf
range measurements is set to be 10cm and the agdsra
+20cm. The angular resolution depends upon théugsn
of the encoder that is used on the tower motor wviicur-
rently programmed to acquire 1000 range readingseye
olution [6].

It has been our experience that the effects ofrthecation
due to the resolution of the scanner and the nwegli
behavior of the range measurement along differpatat-
ing target distances must be considered to obtainrate
results in any position estimation algorithm [18hather
than using the standard 10cm range resolution 20dm
accuracy numbers mentioned above, we considered the
Cyclone scanner’s range off&etruncation and angular
accuracy characterization obtained in a separatty §7].

FIGURE 11. The Cyclone laser rangefinder

1.- The range offset is a function which descrithesdifference
between the measured range value and the truecista the tar-
get.

4.3 Experimental results

The iconic position estimation algorithm presentethis
paper was tested at the highbay area of the FRQrdé-12
shows the line segment model that was used as wjd
in this application. The corridor is about 6m waled 20m
long. The solid line segments denote walls whichevo®n-
structed from wood partitions. We picked this cgofia-
tion because its simplicity and reliability in bgisurveyed.
The dotted line represents the path that the lisisucted
to follow. It consists of a symmetrical trajectdrm long.
The LE, initially positioned at the beginning oétpath,
was moved by steps of 1m. At each of these positithre
position estimator was executed and the robot pase
surveyed using a theodolite. Figure 13 shows theexk
data taken by the Cyclone at the 7th step. Nokiaed con-
siderable number of points from the scanner comedp to
objects that are not included in the model of fegliP.

The estimator was programed to use two differemtasen-
tations of the model. In the first one, the modabwepre-
sented by 8 long line segments shown in figurdrithe
second, each of these line segments was spliaintonber

of small segments 10cm long, providing a model with
almost 400 line segments. The parameter valueswesed

o, = 5cm and, = 5deg for the LE (5% of the step size) and
0s = 10cm and, = 0.7deg for the Cyclone. The grid size
was 0.6x0.6rf

As expected the computed error (surveyed minumeass)
for the two representations was exactly the santieea?0
positions along the path (Figure 14). The maximusi{
tion error was 3.6cm, and the average positionr eves
1.99cm. The maximum heading error was 1.8deg. laad t
average was 0.73deg. These results are signifigesn

the resolution (10cm.) and accuracy (20cm.) ofsitenner.

Another important result is the run times. Theraator
was run on a Sun Sparc Station 1 with a math cessar.
For the 8 line segment representation the apprdeiman
times were 0.37sec. for the preprocessing (comiputaf
thecell map, 0.27sec. for the minimization and 1.76 for
the segment correspondence, giving a total cyaie tbf
2sec. For the 400 line segment representationimas
were 12.9sec. for the preprocessing, 0.29sec émtimi-
mization and 3.22 for the segment correspondeneigy
3.5sec. of total cycle time. Note that by multiplkyithe
number of line segments by a factor of 50, the muegss-
ing time increases considerably, however the matghi
time is increased only by a factor of 1.75.

In the event that the uncertainty regions for thiesed
points can be approximated by circles centeredhen t
points, the segment correspondence can be comm@aped
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conclusions

idly using a numerical Voronoi diagram. This approa-
tion worked well for our highbay experiments [18].

FIGURE 12. World model representation and map
representation

FIGURE 13. Range scan provided by the Cyclone. The
circular icon represents the LE at the position
where the scan was taken from.

ERROR[m] x 103
40.00

.
8500 R POSITION

30.00

25.00

20.00

15.00

10.00

5.00

-10.00

-15.00

-20.00

-25.00

-30.00

-35.00

SCAN POSI”
0.00 5.00 10.00 15.00

ERROR[deg]
1.40 HEADING

1.20 A

SCAN POSI
0.00 5.00 10.00 15.00

FIGURE 14. Computed errors for the 20 positions along
the path.

5.0 Conclusions

In this paper a two dimensional iconic based apgrdar
position estimation was presented. By considenvmyres-
olution levels in the map, a two-stage method appsed
to solve the point/line-segment correspondencehEty
more, the uncertainty due to errors in both dealaring
pose and sensed data are considered in order twl libe
searching area. This approach drastically reduwesam-
putation time when the map is given by a high nunolfe
line segments (e.g. map built by the robot itsélfis algo-
rithm was implemented and tested using a 2D raaisair
scanner mounted on a omnidirectional robot, shovdng
the first time an explicit quantification of thecaracy of an
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conclusions

iconic position estimator. The estimator has shtvbe
robust to incompleteness of the model and spuKdais,
and provides a highly accurate estimate of thetrpbsi-
tion and orientation for many-line environments.

Future work includes a more complete navigatioriesys
including map building capability and a Gaussianarn
tainty model for both the sensor and the robot amoti
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